
BENAISSI Sellami s.benaissi@univ-bouira.dz

Université de Bouira

Faculté des sciences

Département de Informatique

Design Methods

Software Design Methods

1

Human – Computer Interaction HCI3

Software Design Methods

Type Description Example

Data-Driven Design

Models the flow of data through a

system, including the system's inputs,

outputs, and processes.

Data Flow Diagram (DFD), Entity-

Relationship Diagram (ERD)

Object-Oriented

Design

Models the system using objects and

their interactions.
Unified Modeling Language (UML)

Model-Driven

Design

Uses models to generate code and

other artifacts.

Business Process Model and Notation

(BPMN), UML

Event-Driven

Design
Models the system using events.

Event-Driven Architecture (EDA), Message

Queue Telemetry Transport (MQTT)

Agile Methods
Focus on delivering working software

early and often.

Scrum, Dynamic Systems Development

Method (DSDM)

Specific Methods
Models the system using a specific

methodology.

Merise, Waterfall model, V-model, Spiral

model

There are many different software engineering design models, each with their own strengths

and weaknesses. They can be classified into categories as in the table:

Human – Computer Interaction HCI4

Software Design Methods
Type Advantages Disadvantages

Data-Driven

Design

Easy to understand and use, well-suited for

systems with complex data requirements.

Can be time-consuming to create and

maintain, may not be suitable for

systems with complex interactions

between components.

Object-Oriented

Design

Provides a modular and reusable approach to

design, well-suited for systems with complex

interactions between components.

Can be difficult to learn and apply,

may not be suitable for systems with

simple data requirements.

Model-Driven

Design

Can automate much of the design and

development process, well-suited for systems

with complex or changing requirements.

Can be difficult to set up and use,

may not be suitable for systems with

simple requirements.

Event-Driven

Design

Provides a scalable and flexible approach to

design, well-suited for systems that need to

respond to real-time events.

Can be difficult to design and

implement, may not be suitable for

systems with simple requirements.

Agile Methods

Well-suited for systems with changing

requirements, provides a collaborative

approach to development.

Can be difficult to manage and

control, may not be suitable for

systems with complex requirements.

Specific Methods

Well-suited for systems with well-defined

requirements and a predictable development

process.

Can be inflexible and difficult to

adapt to changing requirements, may

not be suitable for systems with

complex or uncertain requirements.

Human – Computer Interaction HCI5

Software Design Methods

Unified Modeling Language

(UML)

UML is a graphical language

for visualizing, specifying,

constructing, and documenting

the artifacts of a software

system. It is a popular model-

driven design method that can

be used to create models of the

system's structure, behavior,

and interactions. UML models

can be used to generate code

and other artifacts, which can

help to improve the quality and

consistency of the system.

Human – Computer Interaction HCI6

Software Design Methods

Merise

Merise is a structured and

entity-relationship modeling

method used in software

engineering. It focuses on

analyzing, designing, and

implementing information

systems by defining data

structures, relationships, and

business processes.

Human – Computer Interaction HCI7

Software Design Methods

Waterfall

The waterfall model is a

sequential software

development methodology

that is well-suited for

projects with well-defined

requirements. The waterfall

model can help to improve

the quality and predictability

of the development process.

Human – Computer Interaction HCI8

Software Design Methods

V-model

The V-model is a software

development methodology

that combines the waterfall

model with a validation and

verification phase at the end

of each development phase.

The V-model can help to

improve the quality and

reliability of the system.

Human – Computer Interaction HCI9

Software Design Methods

Spiral Model

The Spiral Model is an

iterative and risk-driven

software development

approach. It combines

elements from the waterfall

model and the iterative model,

focusing on managing risks

through regular iterations,

prototyping, and risk analysis.

it is better suited for projects

with changing requirements.

Human – Computer Interaction HCI10

Software Design Methods

Agile Methods

Agile methods are iterative and

incremental approaches to software

development that prioritize

collaboration, flexibility, and

responsiveness to change. Examples

of Agile methods include Scrum,

which emphasizes iterative

development and self-organizing

teams, and DSDM (Dynamic

Systems Development Method),

which focuses on delivering

business value quickly while

maintaining quality.

Human – Computer Interaction HCI11

Software Design Methods
Gaps and Shortcomings Related to the Interactive System:

➢ Limited User Involvement.

➢ System-centered (functional guarantee) to the detriment of users.

➢ Late Evaluation

It is necessary to define analysis and design methods in which aspects related to human-

machine interfaces are more explicitly considered.

✓ Design carried out by a multidisciplinary team.

Why an HMI design method?

❖ Reduction of risks and maintenance costs

❖ Reduction of budget/training time

❖ Attractiveness of the application, productivity gain

❖ Reuse and improvement of basic components

User-Centered Design (UCD)

2

Human – Computer Interaction HCI13

User-centered design (UCD)
User-centered design (UCD) is an iterative design process in which designers focus on

the users and their needs in each phase of the design process. In UCD, design teams

involve users throughout the design process via a variety of research and design

techniques, to create highly usable and accessible products for them.

Human – Computer Interaction HCI14

User-centered design (UCD)
User-centered design (UCD)

In user-centered design, designers use a mixture of investigative methods and

tools (e.g., surveys and interviews) and generative ones (e.g., brainstorming) to develop

an understanding of user needs.

The term was coined in the 1970s. Later, cognitive science and user

experience expert Don Norman adopted the term in his extensive work on improving

what people experience in their use of items.

And the term rose in prominence thanks to works such as User Centered

System Design: “New Perspectives on Human-Computer Interaction” (which Norman

co-authored with Stephen W. Draper) and Norman’s “The Design of Everyday Things”

(originally titled “The Psychology of Everyday Things”).

Human – Computer Interaction HCI15

User-centered design (UCD)
User-centered design (UCD)

User-Centered Design is a design process that focuses on users and their

needs at every stage of the design and development process.

This goal is achieved by including users in all stages of design and

development and focusing on the entire user experience.

This goal is achieved by identifying users' requirements and analyzing their

behaviours, needs, expectations and preferences.

User-centered design is applied in many fields such as website design and

mobile applications.

Human – Computer Interaction HCI16

User-centered design (UCD)
Here are some principles that focus on user-centered design:

• Design based on a clear understanding of users, tasks and environments.

• Identifying users’ requirements and analyzing their behaviours, needs,

expectations and preferences.

• Including users in all stages of design and development.

• Apply evaluation frequently and continuously.

• Continuously improve the user experience.

User-centered design can be used in the design and development of interactive graphical

user interfaces, and is used as a basic model for many other models in this field. This

goal is achieved by providing order and organization of the user interface and defining

the functions and tools necessary to achieve the specified goals.

Human – Computer Interaction HCI17

User-centered design (UCD)

Human – Computer Interaction HCI18

User-centered design (UCD)

➢ Specify the expectations and needs of users, know their tasks, and the context.

➢ Answer questions such as:

✓ Who are my users?

✓ What are their problems?

✓ What are their characteristics and abilities (perception, cognition, motor)?

✓ What is the context of use? etc.

➢ Tools:

✓ Interview/Survey,

✓ Persona,

✓ Questionnaire,

✓ Focus Group,

✓ Observation,

✓ Field study,

✓ Documentation,etc.

Phase: Context analysis

User ? Context ?Task ?

Human – Computer Interaction HCI19

User-centered design (UCD)

A personas are imaginary models that represent the users of your app or website.

These personas are used to represent different groups of users and define their needs,

expectations, and behaviors. User personas help improve the user experience and

improve performance, effectiveness and satisfaction when using the application or

website. Personas are based on research and data about real users and are used to

understand user needs, behaviors, motivations, and goals.

▪ User personas are used to represent different groups of users and define their

needs, expectations, and behaviors.

▪ User personas are created based on users' actual and reference data.

▪ User personas help improve the user experience and improve performance,

effectiveness and satisfaction when using the application or website.

▪ Many templates available online can be used to create user personas.

▪ User personas must be compatible with the target user group and contain detailed

and accurate information about the users.

Here are some important points about user personas:

Phase: Context analysis Personas

Human – Computer Interaction HCI20

User-centered design (UCD)
Phase: Context analysis Personas

Human – Computer Interaction HCI21

User-centered design (UCD)
Phase: Context analysis Personas

Human – Computer Interaction HCI22

ISO 9241-210
ISO 9241-210 is an international standard that provides guidelines for the design of

human-centered interactive systems. It was first published in 2010 and has been revised

twice since then. The latest revision, ISO 9241-210:2019, was published in 2019.

1. Human-Centered Design: The standard emphasizes the importance of involving end

users throughout the design process. It promotes a user-centered approach that considers

user characteristics, tasks, and needs, as well as the specific context of use.

2. User Interface Design Principles: ISO 9241-210 provides principles and guidelines for

designing user interfaces that are intuitive, efficient, and effective. These principles cover

aspects such as clarity, simplicity, consistency, feedback, error prevention, and user

control.

The key aspects covered in ISO 9241-210:

Human – Computer Interaction HCI23

ISO 9241-210
3. User Interface Components: The standard discusses various user interface components,

such as menus, dialog boxes, forms, icons, and controls. It provides recommendations

for their design, layout, and interaction to enhance usability and user experience.

4. Accessibility and Inclusivity: ISO 9241-210 emphasizes the importance of designing

interfaces that are accessible to users with diverse abilities and needs. It encourages

inclusive design practices to ensure that interactive systems can be used by a wide

range of users.

5. Usability Evaluation: The standard also includes guidance on evaluating the usability of

user interfaces. It provides methods and criteria for usability testing, expert evaluations,

and user feedback collection to assess and improve the usability of interactive systems.

Human – Computer Interaction HCI24

ISO 9241-210
ISO 9241-210 is intended to be used by designers, developers, and evaluators of interactive

systems, as well as organizations concerned with human-centered design and usability.

It provides a framework for designing user interfaces that prioritize user needs, enhance

user satisfaction, and contribute to the overall usability of interactive systems.

It's worth noting that ISO 9241-210 is just one part of the ISO 9241 series, which covers

various aspects of human-centered design for interactive systems. Other parts of the

ISO 9241 series address topics such as ergonomic requirements, visual display

requirements, and dialogue principles.

Model – View – Controller (MVC)

3

Human – Computer Interaction HCI26

Model –View – Controller (MVC)
• The MVC (Model-View-Controller)

• Created by Trygve Reenskaug during his visit to the Palo Alto Research Center (PARC)

in 1978.

• A software design and architecture pattern intended for graphical interfaces.

• Very popular for web applications

Human – Computer Interaction HCI27

Model –View – Controller (MVC)
• The MVC (Model-View-Controller) pattern is a widely used architectural pattern in

software development that separates the concerns of an application into three

interconnected components: the model, the view, and the controller. It provides a

structured approach to designing and organizing code for user interfaces and

applications.

Human – Computer Interaction HCI28

Model –View – Controller (MVC)
Components of the MVC pattern:

1. Model:

The model represents the data used by the application. It can be stored in a

database, a file, or in memory. The model encapsulates the data, defines the rules

and operations on that data, and notifies the view and controller of any changes.

it also contains the business logic of the application, such as the rules for validating

data and performing calculations. It does not have direct knowledge of either the

view or the controller.

Human – Computer Interaction HCI29

Model –View – Controller (MVC)
Components of the MVC pattern:

2. View:

The view is the user interface. The view is responsible for presenting the data

from the model to the user and for capturing user interactions. It displays the visual

representation of the data and provides an interface for users to interact with the

application. The view does not contain application logic and should remain

decoupled from the model and controller.

Human – Computer Interaction HCI30

Model –View – Controller (MVC)
Components of the MVC pattern:

3. Controller:

The controller acts as an intermediary between the model and the view. The

controller handles user interactions and updates the model accordingly. It also

updates the view to reflect the changes to the model. The controller is the glue that

holds the MVC pattern together. It is responsible for coordinating the interactions

between the model and the view.

Human – Computer Interaction HCI31

Model –View – Controller (MVC)
Benefits of using the MVC pattern include:

- Code organization: The separation of concerns leads to better

code organization and maintainability.

- Code reusability: The modular nature of MVC allows

components to be reused in different contexts.

- Testability: The separation of concerns makes it easier to

test individual components in isolation.

- User interface flexibility: The use of views allows for

different representations of the same data, enabling flexibility

in user interface design.

Human – Computer Interaction HCI32

Model –View – Controller (MVC)
Popular MVC frameworks:

• Django (Python)

• Rails (Ruby)

• Laravel (PHP)

• ASP.NET MVC (C#)

Examples of popular websites and applications that use the MVC pattern:

• Web applications: Twitter, Facebook, Google, Amazon, Wikipedia

• Desktop applications: Microsoft Office, Adobe Photoshop, IntelliJ IDEA

• Mobile applications: iOS apps, Android apps

